RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)			
FIRST YEAR [BATCH 2016-19] B.A./B.Sc. SECOND SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017			
Date	:	15/03/2017 PHYSICS (Honours)	
Time	:	11 am-1 pm Paper : II Full Marks :	50
[Use a separate Answer Book for <u>each group</u>]			
		$\frac{\text{Group} - A}{\text{(Answer any three questions taking at least one from each unit)} [3 \times $	10]
<u>Unit - I</u>			
1	9) 8	Find the Fourier series of	[3]
1.	u)	$f(x) = \begin{cases} 0 & -2 \le x \le 0 \\ x & 0 \le x \le 2 \end{cases}$	[2]
	b)	Find the Fourier transform of e^{-ax^2} where $a > 0$	[3]
	c)	What is Dirac Delta function. Show that $\lim_{\alpha \to \infty} \frac{\alpha}{\sqrt{\pi}} e^{-\alpha^2 x^2}$ is a Dirac Delta function. [1	+3]
2.	a)	Find the general solution of Laplace's equation $\nabla^2 \phi = 0$ in 3-dimensional spherical polar coordinates.	[8]
	b)	Assume there is an axial symmetry along z-axis, how the general solution will reduce (i) inside and (ii) outside a solid sphere of radius r.	[2]
<u>Unit - II</u>			
3.	a)	Find the gravitational potential and gravitational field in different regions of a thick spherical shell of inner radius a and outer radius b.	[6]
	b)	Define axial modulus. Show that axial modulus χ holds the relation $\chi = K + \frac{4}{3}n$ where K is the	
		bulk modulus and n is the modulus of rigidity.	[4]
4.	a)	A particle of mass m moves under a central force. Show that,i) total mechanical energy is conserved.	
		ii) the angular momentum I about the centre of force is a constant of motion. What does it imply for the nature of the orbit?	[4]
	b)	If the force is of the form, $\vec{F} = -\hat{r}\frac{k}{r^2}$, $(k > 0)$, Show that the vector $\vec{A} = \vec{p} \times \vec{L} - mk\hat{r}$ is also a	
		constant of motion. Calculate the magnitude of \vec{A} .	[3]
	c)	The equation of a central-force orbit is given by $r = Ae^{k\theta}$, where A, k are constants. Find (i) the force and (ii) the time-dependence of θ .	[3]
5.	a)	A particle of mass m and total energy E is moving in the force field $f(r) = -\frac{k}{r^2}(h > 0)$ in an	
		elliptic orbit, $\frac{\ell}{r} = 1 + e \cos \theta$ (symbols are standard)	
		Show that its total energy is given by $E = -\frac{k}{2a}$, where a is the semi-major axis of the ellipse.	[5]

b) Find the maximum and minimum velocities, V_{max} and V_{min} , respectively of the particle in the above orbit. Show that $\frac{V_{max}}{V_{min}} = \frac{1+e}{1-e}$. [5]

<u>Group – B</u>

(Answer <u>any two</u> questions from <u>question nos. 6 to 8</u>) $[2 \times 10]$

6. a) Determine the speed and the direction of propagation of the travelling wave :

 $\psi(x,t) = 5 \cdot 0 \exp(-ax^2 - bt^2 - 2\sqrt{ab}xt)$ here $a = 25 \text{ m}^{-2}$ and $b = 9s^{-2}$. [3]

- b) Discuss the distinction between phase and group velocities. Derive an expression for the relation between them. [2+2]
- c) The refractive index of a certain glass is given by the formula : $n = A + B/\lambda_0^2$ where λ_0 is the wavelength in vacuum. Show that the ratio of the group velocity to the phase velocity is $(A\lambda_0^2 + B)/(A\lambda_0^2 + 3B)$.
- 7. a) Prove that the expression for the speed of a longitudinal wave in an ideal gas may be written $\sqrt{(\partial P)}$

$$v = \sqrt{\left(\frac{\partial \mathbf{r}}{\partial \rho}\right)_a}$$
. where a denotes reversible adiabatic process.

[Hint : You may directly start from a known expression for v]

- b) Hi-fi music system is played very loudly at an intensity of $100I_0(I_0 = 10^{-2} W/m^2)$ being the commonly used standard of sound intensity) in a small room of cross-section $3m \times 3m$. Show that the audio power output is about 10W.
- c) Standing acoustic waves are formed in a tube of length 1 with (a) both ends open and (b) one end open and the other closed. If the particle displacement : $\eta = (A \cos kx + B \sin kx) \sin \omega t$

and the boundary conditions are as shown in the diagrams, show that for (a) (both ends open) : $\eta = A\cos kx \sin \omega t$ with $\lambda = 2\ell/n$. and for (b) (one end open, the other closed) : $\eta = A\cos kx \sin \omega t$ with $\lambda = 4\ell/(2n+1)$. Sketch the first three harmonics (only the xdependent term) for each case. [2+2+2]

8. a) A string, clamped at x = 0 and at $x = \ell$, is plucked at $x = \ell/4$ but stopped from the center to the end, so that the initial displacement is given by

[2]

[3]

[2]

The initial velocity, $\left(\frac{\partial \eta}{\partial t}\right)_{t=0} = 0$ obviously.

Assuming a solution to the wave equation for the transverse vibrations of this plucked string of

the form: $\eta(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{\ell} (C_n \cos \omega_n t + D_n \sin \omega_n t)$, find the coefficients (C_n and / or D_n) satisfying the given initial conditions. Therefore, write the (Fourier) series representing $\eta(x,t)$. [If you are unable to write the series in a general summation form then try to write it explicitly,

[6]

[2]

term by term (at least first 6/7 terms).]

b) Show that, in the Doppler effect, the change of frequency noted by a stationary observer O as a moving source S' passes him (assume the angle between them to be zero) is given by

$$\Delta v = \frac{2vcu}{c^2 - u^2}$$

where c is the wave velocity and u is the velocity of S'.

c) Light from a star of wavelength 6×10^{-7} m is found to be shifted 10^{-11} m towards the red when compared with the same wavelength from a laboratory source. If the velocity of light is 3×10^8 m/s show that the earth and the star are separating at a velocity of 5 Km/s. [2]

_____ × _____